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Abstract

Understanding thepatial scale oflemographic connectivitin marine reef fisheslispersing
pelagiclaryaeis a challenging task becausetbé technical difficulties associated wiigging
and monitoring the movemestof progeny at early life stageSeveral studiesighlighteda
strong importance of local retentiovith levels of dispersal of ecological significance restricted
to short distanced .0 date little information is available in species where pelagic dispersal lasts
for long=perieds of timeln this work population structure and connectivity were studiettien
gray triggerfisfiBalistes capriscusGray triggerfisnarvae and juveniles remain associatgth
floating Sargassum sgbeds for an estimatgaeriod of 4 to 7 monthbefore settling on benthic
habitatswhere they remain sedentary as ad#ltsalysis of genetic variation amomppulations
along the continental shelf of the northern Gulf of Mexico and EaSt coastencompassing
over 3,10km of coastlingrevealed homogeneous allele frequencies amnaeakisolation by
distance pattern Moment and maximurtikelihood estimates of dispersal parameters both

indicated occurrence of large neighborhoods with estimates of the dispersdiutiosiri
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parametelo of 914 and 780 km respectively. Simulated distributions of dispersal distarsteg
severaldistribution functionsall featuredsubstantial fractions dbng distance dispersal events
with the 9046 percentilef travel distance prior to settlememteraging 1,809 knThese results
suggesta high dependency of local recruitment on the outpuharflocal spawning stocks

located hundreds oflkmetersaway and a reduced rolelotal retentionin this species

I ntroduction

Characterizinggenetic and demographic connectivignong geographic populations is
essential todesign effective conservation strategi@®we & Allendorf 2010) The marine
environment isa priori opento migrations (Avise 1998and many marine species display a
continuous distributioracrosslarge portions of their range sometimesencompassingeveral
thousandkilometers leading to the assumption that connectiviigcurs across thesdarge
geographic_areapromoted by free dpersal The spatial scale of the actuggnetic connectivity
is however=influenced by several factors including the dispersal capability of sirganhe

density of populations and the strength of local adaptation. The dispersal itsedfrinided by

several factors including the occurrence of barriers to gene flow resulting from discontinuities of

suitable habitat, the duration of the physical transport of agd larvagethe velocity of currents
involved for species with pelagic planktonic phases, and the movement behavior andtiegpabili
of adults In reef fishes, movements of adults are often limisetwhen this is thecase,the
larval transport processeme assumed to be thmajor determinants of dispersdlefs &
McCormick2002Jonest al.2009; Shanks 2009)

Under the island model, enetic connectivity can be maintained eweghen only a few
effective migrantsare exchanged per generation (Waples 1988¢h isoftenenough tarapidly
ensure the spread of advantageous mutatioresss anetapopulatiorfLowe & Allendorf 2010).
However,,nanagement isalso concerned with local demographic change of populgtiam
particularthe relative role of local recruitment and migrationdatermininglocal demographic
dynamics, orthe potential forlocal replenishment through migration from external populations
(Kritzer & Sale 2004). The spatial scale of this demographic connectivity is often diffevent fr
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that of the genetic connectivity and also more difficult to determinebecause it requires
estimating rates of migration©btainingdirect estimates othe spatialscaleof demographic
connectivity requireglataon local recruitment as well as quantitatestimates oimigrations
from and“to"other demgtowes & Allendorf 2010). This information is particularly challenging
to obtain when boundaries between demes are not clearly defined as is the case in many marine
species_that are structured in large continunatapopulationsn such casegag and recapture
studies or studies of element&gnatures in otoliths can provide information on juvenile and
adult movementbutarenotadapted taneasure dispersad mostreef fiskesthat are sedentary as
adults but disperse planktonic eggs and latliaecannot easily be taggéthorrold et al. 2002).
Particletrackingmay be used to preditdrval envelopege.g.Roberts 1997Cowenet al. 2006
Johnsoretral#2009 but this approach caalso bechallenging in species that cannot be modelled
by a simple=particlencluding, for example those utilizingpelagichabitatsthat arefluctuating
over timein size and shapguch as floatin@argassunieds.

Paternity analysis inferred from molecular marker @ded tracking othe maternal origirof
settling juvenilesthrough the analysis dftable isotopesransmitted from mother to offspring
have beenwused successfully to demonstrate occurrence of local recruitment (e.g. e€haistie
201Q Almany.et al. 2007 but these approaches are limitadhen populations are large and
dispersal occuracross broad geographic areas. Genetic estimation of contemporaneous rates of
gene flow throughassgnment tests has been used in several spdomge(& Allendorf 2010
but this approachrequires migrants to be exchanged between discrete and differentiated
populations. When there isolationby-distance in a continuous populatighis method is
irrelevant but=inferences on dispersal can be made usingdlaionby-distance theoretical
framewerk (Rosset1997 Puebla 2009). Recent developments of this approach using individual
modelsand maximum likelihood algorithms (Wat$ al. 2007 Rousse®& Leblois 2007, 2012)
allowed assessing dispersal in metapopulations showing high degree of genetic connectivity (and
homogeneity) across large geographic areas Puebla&t al. 2012).

Studiesin reef fishedo datehaverevealedrelatively small (less than 100 km in most cases)
larval dispersalenvelopes (Roberts 199Zowenet al. 2006 Shankset al. 2009 Pueblaet al.
2012),but the species considered were characterizeghbyt dispersal duratias) usually less

than a month. On another handtabn the spatial scale of demographic connectiarg lacking
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for specieswhere larval dispersalasts longerin those speciegare successful long distance
dispersal events could maintajaneticconnectivity across long distancegen ifthe majority of
dispersal eventarerestricted to local areas; in that situation, liteal spawning biomassould
retain a strong influence aecruitment. Alternatively, longer larval transport could result in high
proportion of dispersal events at lodgtances and a reducedntributionof local spawning
stocksto recruitment. Distinguishing between #gescenarioss essential in order to determine

effective conservation and management strategies.

The gay triggerfish Balistes capriscuss a reefiish that inhabi subtropical and temperate
waters on both Sides of the Atlantic Oceghis speciess highly sedentary as adult where it is
found assoeciated to benthic structures of the continental shelf (Ingram 2001) atrdegihg
between Orand“T0Om (HarmelirVivien & Quéro 1990)Dispersal is thought to occur primarily
duringthelarvaland juvenile stages (Wells & Rooker 2004; Fragikal. 2007)when the species
is pelagic This pelagic phasg4-7 months, Simmons 200B)stslonger tharin most other reef
fishes,and,during that periodlarvae and juvenilegrefoundassociated witfloating seaweeds
and flotsam(mostly Sargassum spuntil theysettleon hard benthistructuresGray triggerfish
reach sexual maturity atlength o250 mm fork length (FLand the age df year for males and
2 years'for females (Wilsagt al. 1995; Ingram 2001). Females produceawerage. 3,809
oocytes per gram of ovaryafige6,318 - 24,188, Hood & Johnson 199Gjay triggerfishcan

live up to 16years in the Gulf of MexicAONMFS 2006) andher generation time isstimated
between 4 and 8 yeardirfget al. 2015).Their center of abundands locatedn the southeast
United States@ulf of Mexico andsoutheast.S. coast) where they approach a continuous
distributien‘aleng shelf habitatEhe life history features dhis speciegredict structuring
accordingto amsolationby-distance model as discussed above where dispersal is limited by the
spatial scale aihe pelagic larval trasport. The extended pelagic phase could promote long
distance movement but it has also been hypothesized that larvae coetigifedn local eddies
andrecruitclose to their spawning locatigNMFS 2006).The availability of a large
continuously distributed population in teeutheastert).S. provides the opportunity to describe
theisolationby-distance model and assess quantitatively the spatial scale of demographic

connectivity resulting frontarval dispersalin this species
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In this work 17 microsatellite markerazere used to survey genetic variation among gray
triggerfishin the northernGulf of Mexico and along theastcoast of the Wited Sates The
dataset was used to characterize patterns of population structure and provide first estimates of

dispersal‘parameters and connectiuityhe species

Materials and methods

Sampling

Samplesof gray triggerfishwere obtained during the summend fall of 2008, 2009 and
2010 Samplingfocusedon subadult and adulspecimens settledn benthic continental shelf
habitatswheresthey are known ttisplay highsite fidelity (Ingram 2001) Specimens fronacross
the northernGulf of Mexico were obtained in conjunction with teemmer andall groundfish
SEAMAP surveys conducted by the Nation®larine Fisheries Service (NOARisheries) The
survey emplays a stratifiedamdomized desigto sample benthic shelf habitats usedriggerfish
juvenilesrand=adult10-100 m depth)by trawling from Pensacola to the.8/Mexico border
(Nichols 20@).-Additional samples from the northern Gulére collected at recreational fishing
docks(Mississippi and vicinity of Panama City, Florida) ahding fisheryindependent reef fish
monitoring, surveys conducted by th@®©NA-Fisheries Panama City laboratory west Florida
(eastof Pensacolajising traps Samplingin the northern Gul{1,400 km of coastline, Figure 1)
yielded 430 specimerand resulted iminimal gapsin this section of the studied rangecept for
the shelf nearing the Mississippi estuary deltala small portion of th&exas shelihorth of
Corpus €hristix

Two hundred and thirtfive additional samples were obtainedm southwest Florida (SWF,
n = 77 collected by trawlinly form southeast Florida (SEF, n = &®llected by anglingand
South Carolinas (SC, n = 78ollected by trappingbringing the total sampling size to 665
specimens

Specimens were preserved frozen on board (SEAMAP sampliesptam ice untilfish were
landed.Muscle tissueand fin clips were collected and stored in 95% alcohoh @imethyl
Sulfoxide (DMSO)saltsaturatedstorage buffer (0.281 EDTA, 20% DMSO, 30%H,0, and
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169  NaCl) prior to DNA extractiorexcept for theamples from South Carolinghich were preserved
170  in a Sarkosyl urea lysis buffer (19%l-lauroylsarcosinate, 26nM NaPO4, 8M urea, 1mM

171 EDTA).

172

173 Laboratory assays

174 DNA extraction was performed following a phemtiloroform protocol (Sambrookt al.

175 1989). The fish were genotyped at 17 microsatellite markers described in A&ntSaillant

176  (2012). Tosimprovethe cost effectiveness ajenotyping,microsatelliteswere assayed inotir

177  multiplex panelsdevelopedduring the studyDetailed multiplexd PCR protocols including
178  microsatellite loci identification, primers concentration, fluorescent labelingspecific T, are

179  presentedrinsAppendix PCR products werkaded oma 6%acrylamide gelnd run oran ABI

180  Prism 377=DNA Sequencer (Applied Biosystetrgster City, CA USA) following instructions
181  from the manufacturerElectropherogramsvere analyzed inthe softwareGENESCAN v.3.1.2

182  (Applied Biosystems)and dleles were called in the softwar€eENOTYPER v.2.5 (Applied

183  Biosystems).

184
185 Data analysis
186 Samples were initially grouped igix regioral populationsbased on gaps in sampling

187  (Figurel).The occurrence of scoring errors due to null alleles, stutteangs,and large allele

188 dropout in _each regional populatisample was tested iMICROCHECKER v.2.2.3 (Van

189  Oosterhoutet al. 2004). The conformance of genotype proportions HardyWeinberg (HW)

190 equilibriumsexpectationsvas tested using exact tests@GaNEPOPV.4.2 (Raymond & Rousset

191  1995; Rousset=20@8 Probability-value estimates were based on 10,000 dememorizations, 500
192  batches, and,800 iterations per batcbeparture fromH-W equiibrium (F;s) measured aé/eir

193  and Cockerham’s (1984)the numbeof alleles allelic richnesgEl Mousadik & Petit 1996and

194  gene diversityexpected heterozygositalculated as described in Nei 198rere computedfor

195 each regienal sampla FSTAT v.2.9.3 (Goudet 1995).

196

197 Analysis of spatial genetic variation
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Homogeneity in allelic richness and gene diversity among samples was tested using the Friedman
ranks test, as implemented in SPS30v(BM Corp. Armonk, NY, USA. The degree of
population differentiationKst) among regionsvas estimatedas Weir and Cockerham (1984)

as calculated IRSTAT and homogeneitgf allele distribution@mong regionadamplesvas tested

using exact tests IGENEPOPR Pairwise comparisonsere performed by computing estimates of
pairwise.d.between individual regions and performing associg@dvise exachomogeneity

tests. Markev,Chain parameters during exact homogeneity tests were the same as above (Exact
tests of HAW equilibrium). The False Discovery Rate (FDR, Benjam&i Hochberg 199p
procedure was used to determine the significance threshold -t@u®s when multiple

independent tests were conducted simultaneously.

Isolatiorby-distance due to limited dispersal potentignd barriers to gene flow (genetic
discontinuities)»mayboth account for divergence among geographic samples. Spatial genetic
variationwithinsthe region washereforefurther explored using the Bayesian clustering approach
implemented inithe software TES.3.1 Chenet al. 2007 Durandet al. 2009a). TESS aimgo
detect genetic discontinuities within continuously distributed populations of eesgemsed on

the distribution. of multilocus genotypes. This approach accounts for the decay of spatial
autocorrelationthat occurs due to isolatmndistance, and is therefore well suited for
populations displaying spatially restricted dispersal and a predicted isdbgtiintance pattern.

One hundred=funs were performed using a conditional autoregression (CAR) admictigle m
allowing for correlated allele frequersi among populations. Each Monte Carlo simulation
included 250,000 sweeps with the first 50,000 sweeps discarded as.bline 20 runs showing

the lowest Deviance Information Criter{®&piegelhalteret al. 2002 were retained to make

inferences; as recamended by Durand et al. (2009b).

Structuring according to an isolatidy-distancemechanism was examinemithin ranges
where no evidence of genetic discontinuity was fodiek method developed by Rousset (2000)
and Lebloiset al. (2004) was employedasit allows estimating dispersal parameters based on
existing theory of isolation-bgistance (Rousset 1997).

The genetic distance between pairs of individuals was estimated as the € statisticet(Watts
al. 2007) computed in the softwa@ENEPOPR The é statistics is more powerful in cases where the
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spatial pattern of population structure is weak (Wattal. 2007),as is the case in the present
study (see results section). The analysis of isoldijedistance focused on data obtained on
specimas (n = 430) collected betwesouth Texas andvest Florida (1,400 km)because this
portion of our“sampling design approached best a continuous sampling along the coastline as
recommended to infer parameters of the model (Lebloas. 2004). Considerintghe shelf habitat

used by gray triggerfish, two approaches were used to compute individual coordinates and
calculategeographic distances between individuals and isolyedistance statistics. In a first
approach @ one dimensional lattice (raltkelf transects following the coastline, 1D model) was
used thus assuming dispersal in a one dimensional linear habitat. In a second appmwach, a t
dimensional /habitat spanning from Texas to west Florida was considered (2D.nibeeBD

model could enly be evaluated using the likelihood approabh@&RAINE where the shape tfie

2D lattice eould be specified.

Because estimation of the parameters of the isolyetistance model is biased when the
geographic distance between samples being compared is greatrs@m2, whereos is the
standard deviation of parental position relative to offspring positimhuais the mutation rate
(Rousset=1997); a bootstrap resampling approach was used to investigate the effect of the spatial
scale of sampling on estimates of the slope of the isolbeatistance relationship andl.
Subsamples were drawn by resampling £6t100 individuals located within subsections of the
lattice of various lengthasing the softwar®optooLsv.3.2.5 Hood 2010 and the slope of the
1D linear regressiorbetween genetic and geographic distanige wWas estimated for each
resampled dataset.

This slopeswaghenused to calculate, given the effective population densiy)( using the

o= 1/i equation 1
4Db

Inferenceswere thus require information on population density. Two approaches were taken

relationships(Rousset 1997)

to obtain values foD and discuss values af and the distribution of dispersal distances. An

upper boundor D is given by the census population dengD¢). The census density of gray
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triggerfish wasestimatedbased on average landing data in the Gulf of Mexico during the
sampling periodobtained from the recreational fisheries statistics database ofisheries
StatisticsDivision of the National Marine iBheries Servicépersonal communicatigrdatabase
accesse®8 January2016§ and accounting foestimates offishing mortality ratesthat range
between @35and 0.53NMFS 201). The obtained estimat# the census number of adulias
applied to _theGulf section of the lattic§€2,035km) to derive estimates of census den®itythe

1D model ‘and teestimates of tharea of theshelf habitat for gray triggerfislapproximated aa

strip surroundinghe D latticefor the2D model.

Effective™density(De) was also estimated using genetic daansidering the observed
homogeneity in allele frequenciesrossthe sampling surfacéseeresultg, an estimate ofthe
effective sizesfor th@verall metapopulation asgenerated usinthe maximum likelihoodML)
coalescentrapproach the softwaréVlIGRAINE v.0.4.1 (Rousset Leblois 2007, 2012 eblois et
al. 2014).The OnePopVarSize demographic modébwing accounting for historical change in
population size,was used in the estimati@ypppendix 2) The parameteN that represents an
estimate of the current effective population size was calculated assuming an average mutation
rate across'microsatellites ok5L0* (Estoup & Angers 1998N was also calculated considering
mutation rates‘of Idand 10" in order to evaluate the sensitivity of parameter estimates to the
mutation rateThe obtained estimate bfwas applied to the entire lattitength'surfaceto derive
an estimate of effective density.

Estimates oftontemporaneoul. by thelinkage disequilibrium methoderealso generated

for each of the 6 regional populatiomsing the softwareDNE (Waples & Do 2010).

Becausesthe genetic consequences of dispersal depend on the shape of the distribution of
dispersal distance (Rous2€08h), a simulation approadhfter Pueblaet al. (2012) was taken to
determine the parameters of dispersal distance distributions yielding isdigtthstance slopes
consistent with, that estimated from the empirical dataset. Coalescent simulations were
implemented in the softwal&DSim v.2.0 (Leblois et al. 2009) considering various distribution
functions (Geometric, Pareto, and Siche§imulationsemployeda one dimensional lattice of
10,000 km with absorbing boundariesmples were generated fr@i,400 node subsection of

the latticeto matchthe length of theportion of the northern Gulf of MexiceguthTexas towest
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Florida, approximately %00 km of coastling used in the empirical studgnd at most one
individual was sampled per nad&mulated datasets included 17 unlinked loci following%v
mutation modelwith a mean mutation rate of 6 10* and a geometric variance of mestep
mutationswith™parameter estimated duringe estimation inMIGRAINE (Appendix 2). The
simulated| datasets were processed for isoldiiedistance analysis as described above.
Parameters for each of the dispersal distribution functions were adjusted to detangae of
values leading to isolatieby-distance slope® similar to thogs obtained with the empirical
datasetSeries of simulations were then conducted in triplicates within this range to identify the
parameter values (or combination of parameter values) that led to isdigithstance slopes
closest to the estimates fromet empirical dataset. The influence of the mutation rate on the
dispersal distribution parameters was evaluateddnsidering matation rates of 1&and 10*
usedasanupper and lower bound of tleveragemutation rate for th&7 microsatellites used in
the study, respectively.

Finally, Maximum Likelihood estimates aof were generated using both linearIBD and
planarIBD demaographic models implementedVMrGRAINE. These methods provide an estimate
of the neighborhood size paramet®&h) from which an estima of ¢ can be derived. The
planarlBD model accounts for a two dimensional habitat while the linearIBD model assumes
dispersal along a one dimension (linear) lattice. Estimates were generated during three replicate
runs employing the Product of Approxima&enditional (PAC) likelihoods algorithmwith 2,000
points and 100 runs per point.

Estimates of the parameterwere derived fromNb using the relationship§b = 2Dog?
(equation 2=and Nb = 2Dno? (equation 3 for the linear and the two dimensional rebd
respectivelywhereD wasset to the census tihe effective populationdensityvalue determined
as above.

An exclusion approach in the softwaBeNeCLASS v.2.0 (Piry et al. 2004)was usedo test
the influence_of possible migrants from divergent gray triggerfish populations oratestiof
isolatiortby-distance parameterSampled individuals were assigned to a locdiéged on their
multilocus genotypeaisingthe Bayesian method éfannah & Mountain (1997)the probability
that an individual belonged to a given locality was calculated using the resgrajgorithm of

Paetkauet al. (2004) and was based on 10,080nulatedindividuals Putative migrants were
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315 identified as those showing-value of assignment below 0.05 fall 6 regionalsample. The

316  slope of the isolatioiy-distancemodel and sigma wene-calculatedas described abo\egter

317 removingthe detected possible migrafitsm the dataset

318

319 Results

320 Fourout of 102 tests(6 geographic samples x 17 loci) of Haieinberg equilibriunmwere

321  significantbefore FDR correction for multiple testperformed simultaneously.dde of the test

322 remained Significanafter correctionMICROCHECKERanalyses indicatedossibleoccurrence b

323 null alleles attocusBC14 in the ETXLA region, locus BC17 in the SEF region, astlittering

324 and/or null alleles abcusBC3 in the SWF regiarBecause the scoring artifacts at these three
325 loci were found in one region (out of 6) only and did not lead to significant departure from
326  Hardy-Weinberg expectatiomll 17 markers werkeptfor further analysis.

327 Summary statistics per locus and per region including number of alleles, allelic richness, gene
328 diversity, inbreeding coefficientand probability of significance of tests of Hafdeinberg

329  equilibrium are presented in AppendxThe number of allelesA] per locus averaged 25.6 and
330 ranged between 9 (locus BC14)d45 (locus BC46). Gene diversitgngedbetween @7 (locus

331 BC16 in the . SEF region) and 0.969 (locus BC46 in the SWF regMip)ic richness and gene
332 diversitydid notdiffer significantly among localitied(= 0.240 and = 0.083respectively).

333 The estimate o/ was very low (0.0004, 95% bootstrapping Confidemteri/alCl: 0-0.001)

334 and the probablthat ¢ differedfrom zero from exact homogeneity tests was 0.8RlInogeneity

335 tests at individual loci did not reveal significant heterogeneity in allele frequeami@sy regions

336 except forrone locysBC46, that showed significant heterogeneify = 0.042) before FDR

337  correction but not after correctioRairwiseé values between individual regions averd@0006

338 (range -0.0006-0.0018able 3 and only two pairwise exact homogeneity tests (across loci) were
339  significant before andafter FDR correction (SWF versus ETDA comparison:P = 0.0177,

340 estimate of.="0.0008; SWF versus SEF compariséh= 0.0032, estimate & = 0.0018).

341 Bayesian ‘elusteringuns in TESS all converged twards a single unit with no genetic

342  discontinuity within the samptkerange. Furtheanalysis of isolatio#by-distanceproceeded under

343  this assumption.
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The estimate of the current effective sidg (lerivedassuming an average mutation rate
of 5x10* was 29,940ndividuals(95% CI: 18,57662,63Q Appendix 3. The genetic estimate of
D was generated by applying the estimat&db the entire one dimensional lattice (frawuth
Texas to"South Carolin&,100km) yielding a value of 9.66hdividuals/km(95% CI: 5.9920.20)
for De for the 1D model.N was then applied ta 20km wide stripsurrounding théransect line
(123,331 km) for the2D model yielding a value of 0.24d./knf (95% Cl: 0.150.51) providing
an uppetbound valudor D under this model. The census den§ityfor the Gulf of Mexicowas
175 indlkm(1Dymodel) or 2.89nd./knt (2D model) giving a ratio of effective to census density
of 0.055 (95% CI: 0.0340.115) for thelD model and 0.083 (95% CI: 0.0%2176) for the2D
model.

All therobtainedN, estimates from the linkage disequilibrium method were infinite or very
large (greatertha, 494 Appendix 9.

Estimates of thesolationby-distance slopainder the 1Dmodel using subsets of the data
encompassing increasing distance ranges revealed a high varianceséopesghenresampled
datasetswere generatedising genotypes found withirshort distance range& 1,100 km
Appendix=5)~The mean andtandard erroof slopes from resampled datasets stabilized between
34 x10® and 44 x10” when the sampled range was between 1,400 and 1,708pger{dix 5).
Accordingly,final estimates were generated based on all available data for the area lsethen
Texas andvest Florida where thénigh density of sampling locationgith minimal gaps best
reflected the nearontinuousdistribution of gray triggerfish along the continental shélfie
obtained éstimate was 3.1 x®Qower and upper bounds of the slope24 x 10’ and 4.61 x 10
’ Figure 2)=Point estimates generated using greater portions of the dagmsetcliiding
localitiessinssouth Florida andSouth Carolina) were all included within the bounds of the
confidence interval described abov&onsidering the genetic estimate of effective denresitgt
census densifythe corresponding values ofderived using equation 1ere 914 (95% CI. 237
+o0) and 215 (95% CI: 56+) respectively.

Estimates ofo derived fromNb values obtained from the maximuikelihood approach in
MIGRAINE using equations 2 and 3 were 780 (95% CI:-25%7) for thelD model and 740 (95%

Cl: NA-7,330) for the2D model. Because dispersal along a coastline one dimensional axis can be
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373  approximated more easily and the ML estimatkedispersal using th&D and 2Dmodels were
374  similar, further analysis of dispersal distributions via simulations focusduedlit model.

375 The simulateddispersal distributions are presented in Tabl@ll distributions compatible
376  with the 'empirical isolation by distance regression involved mean dispersal distapater than
377  123km. Examination of cumulated distributions reveals that 10% of dispersal eventsedcat
378 distances greater than 326 km in all distributigaserated and, on average, at distances greater
379 than 1,80%m (Table3).

380 The ML estimates of the standard deviation of the pasHgpring dispersal distance
381 remained lafg@vhen a low average mutation rate 1@vas considered with a point estimate at
382 349 km (95% Cl: 1141,126).The estimate using a high mutation rate scenario (average 10
383 vyielded substantially larger values for sigma (point estimate 1,103, 95% Ci3,289).
384  Simulated=dispersal distributions accounting for the two mutation rat@®am all yielded an
385  estimate dfo greater than 123 kmu(= 10%) or 141 km (1 = 10% when the census density was
386 used in calculations, or 23% € 10%) and 259 (¢ = 10°) when the estimate of effective density
387 was usedAppendix 6).

388 Exclusion‘analysis in BNECLASS detected three putative migrants. The estimate of the 1D
389 isolationby-distance slope obtained after excluding those 3 individuals was 4.08(low@r

390 and upper bounds of the slofe17 x 10’ and 4.66 x 10) and corresponded to sigma values of
391 795 (95%/Cl: 236-%) or 187 (95% CI: 55-+o0) when considering effective and census density

392  respectively.
393

394  Discussion

395 Allele frequencies at the 17 microsatellil®@sre homogeneouacross the sampled area

396 indicated by the very low estimateof Fst. Only two pairwise exact testsomparing the

397 southwest Floridaample to the southeast Florida and east Texas/Louisiana samples respectively
398  were significant These three geographic samples did not differ significantly in allele freigge

399 from any other regional sampleleading to the interpretation that the marginal difference

400 between these localities did not correspond to true barriers to gene flow. This finaéng w
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confirmed by the outcome d@ayesian clustering using a spatially explicit apphoan TESS
which converged toward a single unit and no discontinuity.

The lack of divergence among regional sampgesonsistent with a preliminary assessment
based omitochondrialDNA conducted byAntoni et al. (2011). Genetic discontinuities within
the sampled area have been evidenced in a variety of other marine and spedts in
particular betweenthe Gulf of Mexico andthe U.S. eastcoast (Avise 1992), or between
populationseastand west of Mobile Bay (Karlssonet al. 2009 Portnoy& Gold 2012) These
reported genetic breaks involved species occupying coastal or estuarine ,habsp¢xies using
offshore habitats budisplaying characteristics prone to maintaining geographic structure such as
limited dispersal abilitiesin contrast, species occupyingter shelf habitatsimilar to those used
by the graytriggerfisland dispersing pelagic larvae not displaycleargenetic discontinuigs
across thessame geographic areay.(redporgy, Pagrus pagrusBall et al. 2007, or the red
snapperlutjanus campechanuSaillantet al. 201Q Hollenbecket al. 2015).

The spatial scale of demographic connectiiritgray triggerfishwas exploredy estimating
the parameters! of thisolationby-distancemodel. Both the moment estimator of Wais al.
(2007) and=the=maximum likelihoo@stimatein MIGRAINE (Rousset& Leblois 2007, 2012)
yielded large. estimates oheighborhoodsizeswith estimates of the parameterapproaching
800km. Simulated distributions of dispersal distances using different families ofidmscand
different mutation ratesyielded average dispersal distances between 123 and 1,323 km.
Moreover, examination of thr@mulateddistributionsof dispersal distancesdicatedthat 10% of
dispersal eventgesulted in migrations acrosery long distances from origitthe average90%
percentilewas17809 km).Interestingly, e relatively high frequency ofong distance dispersal
events(90%percentile in the hundreds of kilometexsisobserved in all simulationsncluding
thosewhere the census population size (which can be considered as an upper bound of effective
density) was usedyhich indicates that thanference that demographtonnectivity occurs across
long distancess: not affected by uncertainties on the value of effective population deAsity
fraction“of immigrants of 10%s usually considereds a thresholdbelow which connected
populationsare transitionng from demographic dependence to independdhtaestings 1993
Waples& Gagiotti 2006). While gene flow cannot easily quantified in terms of a percentage of

immigrants in the case afolationby-distance, the long distancésaveled by a substantial
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fraction of gray triggerfish before recruiting to benthic habitats and subsequertreeding
populations is consistent with a large degree of demographic depenafelooal recruitment

from nonlocal spawning stocks, includinthoselocated severahundreds of knfrom a given
recipient'benthic habitat This result contrasts with findingn studies of the demographic
connectivity of variouseef fisheqe.g. Roberts 199Towenet al.2006 Pueblaet al. 2012)that
concluded that dispersal of ecological significance was occurring within short distances (less than
100 km in.most casesJhe species considered in these studies dispeaseaeover aperiod
limited to afew'weeks andisually less than 40 dayghile gray triggerfisHarvae and juveniles
remain in theéSargassumhabitat for 4 to 7 months (Simmons 2008hus, althoughlocal
spawners could contribute tecruitmentin the same regioif larvae are caught in local eddies
(NMFS 2006;+the present results indicate that such local retention, if it occurs, is limited and
local recruitment is dependent for a large partt@output of spawningopulationslocated at

long distancedrom recipient habitatsAn important consequence for management of gray
triggerfish populations is that recruitment cannot be predicted lfyoahspawning biomass since

it depends for a large pash the output ohondocal spawning populations. Insteadcruitment
indices may=need to be based on the abundance of newly settled juveniles in ordertdam m
healthy local populations.

Inferences based on thesolationby-distance relationshipimply that dispersal was
symmetrical along a one dimensionalisaxinformation on the movement and dynamics of
Sargassunpatches used by gray triggerfish larvae and juveniles is still linitee.peakof the
gray triggerfish’ spawning season occur June and JulySimmonsand Szedlimayef011).
During thesesmonthSargassunis found in abundance in the Gulf of Mexico and tends to move
off the Flerida=eoast and along the Gulf Stream in September (Gower & King 2008). This could
favor asymmetric dispersal rates from the Gulf to the Atlantic, a hypothesis that cannot be
formally testedusing currerly available methods to analyms®lationby-distancelmproved data
on the accumulation and movemenSairgassumvould also be helpful in order to develop more
accurate-dispersal models for gray triggerfish in the region. Anbthigation of the 1D model
used in this study is that shortéispersaloutes across open water were not accouioigléading
to potental bias during inference of long distance dispersal evanparticular in the Gulf of

Mexico. Considering dispersal across sections of the open Gulf (e.g. from south Texas to West
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Florida) in a 2D frameworkis challenging because gray triggerfish lareamnot settle in the
middle of the Gulf thus violating assumptions thfe model. Estimating densitys also
challengingbecausethe adult habitat is limited to the shelf. An upper bound of density was
obtained considering a 20 km wide strip surroundinglibelattice and led to estimates of
consistent with' those of the 1D modgét likely underestimatingo. Thus, while further
developments.of isolatieby-distance models to allow accounting for the specific characteristics
of habitats used bgray triggerfishand the dispersal procea®uld be needed, the inference of
large neighborhood sizes and long distance dispersal seems supportethensle models.
Another underlying assumption made duriimferences on connectivity based on poputatio
genetics models is that the populatieas reachedn equilibrium situationwhile this cannot be
determined easily,epeated temporal samplirapuld be conductedo confirm the temporal
stability of‘patterns described in this study.

The analysis conducted in this work also implicitly neglected the effeatsnaifjration from
geographic_populations other portions of the species’ rangeagtriggerfish are reported in
Central and South America, in Europe and the MediterraBearand in westernAfrica (Robins
& Ray 1986"Sazonov& Galaktionova 1987). Migrations of gray triggerfish from populations
located in theseast Atlantic or South Ameraraunlikely considering the long distances involved
and large sections of unsuitable hatsitfor adults in the open Atlanti€aribbearhabitatsare
closer to the Gulf but thspecies appears extremely rarénat region(L. Antoni and E. Saillant
Unpublished. results)However, the impact of rare migrants from divergent populations on
estimates‘of isolation by distance parameters cannot be exadudedas evaluated by omitting
possiblemigrants identified in an exclusion analysis@GeNECLASS. The parametersbtained
were very'similar to thosgeneratedising theentire dataset suggesy that estimates are robust
to this departure of the 1D model.

Gray triggerfish aralsopresent in thesouthernGulf of Mexico (e.g. the Bay a€ampeche).
Populations fream the southern Gu¥buld be expected to be connected to the studied populations
ard followstheisolationby-distance pattern described in this studh the additional implication
that the effective density estimate would be lower depending orgéographicextent of gray
triggerfish south ofTexas and thelimitations of the 1D modeldiscussed aboveGenetic
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characterization of gray triggerfish in the southern Gulf and study of their abundanceaistedh
to evaluate this hypothesis and refine current estimates of dispersal parameters.

The ratio of effective to census population density was approximately815 This value is
intermediatebétween the extremely low ratibeffective to census population si@®* to 10°)
reported in studies afomeother marine fishes (Turnet al. 2002 Hauseret al. 2002 Saillant &

Gold 2006) and the range (»1) expected in most situations based on demographic models
(Nunney & Elam 1994). Estimating effective population size/density is particulaallenging

in marine /Species structured in large connected populations as is thercgsayftriggerfish

(Hare et al. 2011). Methods based on coalescent simulations such as the model used in the
present study tend to estimate the size of the overall metapopulation that includes all demes
connected=torane another by migrations as long gsation is not too low (Haret al. 2011).

These methods also integrate the various historical events experienced by apepuriation

over time meaning that it is difficult to determine an appropriate census number that can be
matched with the obtainedstimates ofN.. The model useth the present study accounted for
historical population growth rate of gray triggerfish and thus the estimaké g#gnerated is
expected-torreflect current/receNg, after the detected recent change in population size event
(Leblois et al+2014) Very recent changes in population simégght not be reflected in the
coalescent estimate and the r&digD. may be biased if the estimates of census and effective size
respectively correspond to different time periodsAlternative methods to estimate
contemporaneous effective size such as the linkage disequilitvilaples 2006Waples& Do
2010)would have been preferable to match directly census and effective numbers for the same
cohorts (Hareetsal. 2011) but these methods areywanprecise whem, is greater than 1,008s

was foundrinsthe present studyhen there issolationby-distance, estimates & by the
linkage disequilibrium based on samples collected within a breeding window tend to reflect the
neighborhood size (Neelt al. 2013). This suggests that, even though results fromlitil@ge
disequilibrium_methodack of precisionn the present casthe infinite or very large estimates

are consistent with thevery large neighborhood size inferred during isolatipyadistance
analysis.The census densigstimatewasderived based on catch dataailable from the NOAA

Office of Science and Technologiatabase fothe period that matched genetic sampling and

approximates theensityof adults present ohenthichabitats. This value can be considered an
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520 upper bound for population density asvaisuncorrected for potential factors likely to lowes

521  such as biased sex ratio and variance in reproductive sbressey & Elam 1994).

522

523  Conclusonsand management implications

524 This study used a genetic approach to estimate demographic connectivity among geographic
525  populations of the gray triggerfish, an aesdtdentary reef fish with extended pelagic dispersal.
526 Estimatesf the dispersal parameters iniaalationby-distance framework were consistent with
527 large neighbrheodsand dispersatvents spreadut over longsections of the shelf habitat used
528 by the specieésTheseestimatessuggest a reduced role of local retention in determining local
529 recruitmentand, a high dependency on the reproductive output ofloeah spawning stocks
530 potentially=located hundredsr @ven thousands of kilometers away from recipient benthic
531 habitats. This=result contrasts with findings in other reef fishes that disperse pelagic larvae over
532  shorter pdods (anddistancesand suggests th#te longer dispersah this speciess associated

533  with a reduced.importance of local retention. Implications for management ofafiopslare

534  significant inthafisheries harvest cannot be managederthe assumion that local biomasses
535 are the major=determinaaft recruitment. Divergence among geographic regions is insufficient to
536 implementclassical mixed stock fisheries modeisthis case and alternative approaches would
537 need to be develope&urther informabn on dispersal distribign would be useful in order to
538 better characterize demographic connectigitgdevelop appropriatsnodelsfor management of

539 regional fisheriesStudiesof the dynamics of formation and movementSafrgassunpatchesn

540 particularwill be useful to develop more accurate models predicting dispersal andticenluk

541 used to study: dispersal in other species that utilize this hahitaearly life stages

542  Contempeoraneous estimateseffective population density would asbe neededut it will be

543  challenging to generate those estimates based on genetic data. Improved dataistonyf traits

544  of gray triggerfish would be useful to estimate population size using demographadset

545
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Table 1 Estimates of kr (Weir and Cockerhartl) (upper diagonal) and probability thagF= 0

(lower diagonal) for pair-wise comparisons of microsatellite allele distributions between gray
triggerfish geographic samples. Probability values that differed significantly from zero following
correctionfor multiple tests are in bold

STX=ETX-LA MSWF  SWF SEF SC

STX 0.0007 0.0003 0.0004 0.0018 -0.0002

ETX-LA | 0.182 0 0.0008 0.0006 -0.0006

MS-WF | 0.543¢ 0.048 0.0004 0.0012 -0.0006

SWF| 0163 0.018 0.259 0.0018 0.0003

SEF | 0.220 0.203 0.297 0.003 0.0015
SC|0.514. 0.618 0.323 0.265 0.098
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Table 2 Parameters of simulated distributions yielding isolation-by-distance slopes comparable to that of the empirical dataset
(point sestimate and upper bound). D: population densityymean (simulated) dispersal distanee;standard deviation of
parental position relative to offspring position; sim.: simulated; est.: estinfatealue: Range of Mantel test P-values (10 000

permutations) in the 3 replicates

o IBD
Model M _ 95%- 95%+ P-value

(sim./est.)  Slope

De= 10 ind./km
Empirical 914 3.10E-08 -5.24E-07 4.61E-07 0.159
0.0000-
Rareto (M=0.995 ; n=1.16) 482 1,509/293 3.02E-07 1.25E-07  4.99E-07

0.0002
0.0248-
RPareto (M=0.97 ; n=0.92) 1323 2,666/938 2.94E-08 -9.93E-08 1.88E-07 0.0670

Geometric (m=0.98 ; g=0.993) 140  203/242 4.41E-07 2.50E-07  6.48E-07 0.0000

Geometric (m=0.95 ; g=0.999) 950 1,400/1,031 2.43E-08 -1.02E-07 1.74E-07 0.0000

0.0000-
Sichel(y=-0.0005 ; &=15000 ; Q=0.002) 420 1,037/318 2.56E-07 4.89E-08 6.64E-07 0.0004
0.0113-
Sichel(y=-0.002 ; £&=15000 ; Q=0.001) 505 1,263/806 3.98E-08 -8.92E-08 2.05E-07 0.0794

D.= 175 ind./km
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Empirical 215

3.10E-08

Pareto (M = 0.95; n = 0.98) 1047 2,300/219 2.99E-08

Geometric (m=0.98 ; g=0.992) 123 175/213

Sichel (y2-0.001 ; £&=10000 ; Q=0.004) 278  660/212

3.14E-08

3.19E-08

-5.24E-07

-8.65E-08

-6.28E-08

-9.57E-08

4.61E-07

1.51E-07

1.45E-07

1.69E-07

0.159
0.0143-
0.1863
0.0085-
0.0522
0.0011-
0.1525
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Table 3 Percentile distribution of the simulated functions compatible with the isolation-by-

distance slope estimated during the study

Distribution parameter Percentile

25 50 75 90
Pareto (M=0.995 ; n=1.16) 3 12 137 1,247
Pareto (M=0.97 ; n=0.92) 12 166 1,519 4,866
Geometric (mM=0.98 ; g=0.993) 40 97 196 326
Geometric (m=0.95 ; g=0.999) 238 643 1,336 2,251
Sichel (y==00005 ; £&=15,000 ; Q=0.002) 14 67 356 1,205
Sichel (y=20:002 ; £&=15,000 ; Q=0.001) 12 65 403 1,485
Pareto (M = 0.95; n = 0.98) 6 75 912 3,889
Geometric (m=0.98 ; g=0.992) 35 85 172 286
Sichel (y==0.001 ; £&=10,000 ; Q=0.004) 13 54 241 726
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